21 research outputs found

    Efficient Invariant Features for Sensor Variability Compensation in Speaker Recognition

    Get PDF
    In this paper, we investigate the use of invariant features for speaker recognition. Owing to their characteristics, these features are introduced to cope with the difficult and challenging problem of sensor variability and the source of performance degradation inherent in speaker recognition systems. Our experiments show: (1) the effectiveness of these features in match cases; (2) the benefit of combining these features with the mel frequency cepstral coefficients to exploit their discrimination power under uncontrolled conditions (mismatch cases). Consequently, the proposed invariant features result in a performance improvement as demonstrated by a reduction in the equal error rate and the minimum decision cost function compared to the GMM-UBM speaker recognition systems based on MFCC features

    Tracking times in temporal patterns embodied in intra-cortical data for controling neural prosthesis an animal simulation study

    Get PDF
    Brain-machines capture brain signals in order to restore communication and movement to disabled people who suffer from brain palsy or motor disorders. In brain regions, the ensemble firing of populations of neurons represents spatio-temporal patterns that are transformed into outgoing spatio-temporal patterns which encode complex cognitive task. This transformation is dynamic, non-stationary (time-varying) and highly nonlinear. Hence, modeling such complex biological patterns requires specific model structures to uncover the underlying physiological mechanisms and their influences on system behavior. In this study, a recent multi-electrode technology allows the record of the simultaneous neuron activities in behaving animals. Intra-cortical data are processed according to these steps: spike detection and sorting, than desired action extraction from the rate of the obtained signal. We focus on the following important questions about (i) the possibility of linking the brain signal time events with some time-delayed mapping tools; (ii) the use of some suitable inputs than others for the decoder; (iii) a consideration of separated data or a special representation founded on multi-dimensional statistics. This paper concentrates mostly on the analysis of parallel spike train when certain critical hypotheses are ignored by the data for the working method. We have made efforts to define explicitly whether the underlying hypotheses are actually achieved. In this paper, we propose an algorithm to define the embedded memory order of NARX recurrent neural networks to the hand trajectory tracking process. We also demonstrate that this algorithm can improve performance on inference tasks

    Generalized recursive algorithm for fetal electrocardiogram isolation from non-invasive maternal electrocardiogram

    Get PDF
    Non-invasive maternal electrocardiogram recording is the least unpleasant method to record a weak fetal electrocardiogram signal. The importance of this recording lies in the fact that it reveals crucial information about the fetal health state, especially during the last four weeks of pregnancy. This paper will be concerned with a new adaptive algorithm, namely the generalized recursive algorithm, to isolate and get the fetal electrocardiogram from the abdominal maternal electrocardiogram. This is achieved using a non-invasive method for bi-channel maternal electrocardiogram recordings i.e., with the thoracic maternal electrocardiogram as a reference signal, and the abdominal maternal electrocardiogram as a primary signal. Prior to this procedure, the discrete wavelet transform (DWT) method is applied to the abdominal electrocardiogram signal to clean it from any additive noise and the baseline wandering that is generally present on the raw recordings. The proposed new adaptive filter is shown to deliver improved characteristics through simulations. These simulations were performed on both synthetic and actual signals. This work was compared with the normalized least mean square algorithm

    A Novel Neuroglial Architecture for Modelling Singular Perturbation System

    Get PDF
    This work develops a new modular architecture that emulates a recently-discovered biological paradigm. It originates from the human brain where the information flows along two different pathways and is processed along two time scales: one is a fast neural network (NN) and the other is a slow network called the glial network (GN). It was found that the neural network is powered and controlled by the glial network. Based on our biological knowledge of glial cells and the powerful concept of modularity, a novel approach called artificial neuroglial Network (ANGN) was designed and an algorithm based on different concepts of modularity was also developed. The implementation is based on the notion of multi-time scale systems. Validation is performed through an asynchronous machine (ASM) modeled in the standard singularly perturbed form. We apply the geometrical approach, based on Gerschgorin’s circle theorem (GCT), to separate the fast and slow variables, as well as the singular perturbation method (SPM) to determine the reduced models. This new architecture makes it possible to obtain smaller networks with less complexity and better performance

    Content Fragile Watermarking for H.264/AVC Video Authentication

    Get PDF
    Discrete Cosine transform (DCT) to generate the authentication data that are treated as a fragile watermark. This watermark is embedded in the motion vectors (MVs) The advances in multimedia technologies and digital processing tools have brought with them new challenges for the source and content authentication. To ensure the integrity of the H.264/AVC video stream, we introduce an approach based on a content fragile video watermarking method using an independent authentication of each Group of Pictures (GOPs) within the video. This technique uses robust visual features extracted from the video pertaining to the set of selected macroblocs (MBs) which hold the best partition mode in a tree-structured motion compensation process. An additional security degree is offered by the proposed method through using a more secured keyed function HMAC-SHA-256 and randomly choosing candidates from already selected MBs. In here, the watermark detection and verification processes are blind, whereas the tampered frames detection is not since it needs the original frames within the tampered GOPs. The proposed scheme achieves an accurate authentication technique with a high fragility and fidelity whilst maintaining the original bitrate and the perceptual quality. Furthermore, its ability to detect the tampered frames in case of spatial, temporal and colour manipulations, is confirmed

    Fast algorithms for the multidimensional

    No full text
    Ph.D.Russell M. Merserea

    H.264/AVC digital fingerprinting based on content adaptive embedding

    No full text

    H.264/AVC digital fingerprinting based on spatio-temporal just noticeable distortion

    No full text
    This paper presents a robust adaptive embedding scheme using a modified Spatio-Temporal noticeable distortion (JND) model that is designed for tracing the distribution of the H.264/AVC video content and protecting them from unauthorized redistribution. The Embedding process is performed during coding process in selected macroblocks type Intra 4x4 within I-Frame. The method uses spread-spectrum technique in order to obtain robustness against collusion attacks and the JND model to dynamically adjust the embedding strength and control the energy of the embedded fingerprints so as to ensure their imperceptibility. Linear and non linear collusion attacks are performed to show the robustness of the proposed technique against collusion attacks while maintaining visual quality unchanged

    Decoding Hand Trajectory from Primary Motor Cortex ECoG Using Time Delay Neural Network

    No full text
    International audienceBrain-machines - also termed neural prostheses, could potentially increase substantially the quality of life for people suffering from motor disorders or even brain palsy. In this paper we investigate the non-stationary continuous decoding problem associated to the rat's hand position. To this aim, intracortical data (also named ECoG for electrocorticogram) are processed in successive stages: spike detection, spike sorting, and intention extraction from the firing rate signal. The two important questions to answer in our experiment are (i) is it realistic to link time events from the primary motor cortex with some time-delay mapping tool and are some inputs more suitable for this mapping (ii) shall we consider separated channels or a special representation based on multidimensional statistics. We propose our own answers to these questions and demonstrate that a nonlinear representation might be appropriate in a number of situations
    corecore